Создан новый метод 4D-моделирования зданий при помощи машинного обучения

Создан новый метод 4D-моделирования зданий при помощи машинного обучения

Группа ученых из Сколтеха и исследовательского института FBK (Италия) представила методику, позволяющую создавать 4D-модели зданий с помощью исторических карт и машинного обучения. Используя новую методику, можно не только предсказывать высоту зданий на основе их геометрических параметров, данных о районе и категории здания, но и получать более полную информацию о различных явлениях и изменениях в городской среде, сыгравших важную роль в формировании современного облика наших городов. Результаты исследования опубликованы в журнале MDPI Applied Sciences.

Наиболее важным источником информации для анализа изменений в городской застройке являются исторические карты. Однако на таких картах трехмерный мир представлен в двухмерном пространстве, которое лишь отражает главные особенности городской среды, не учитывая пространственную информацию и в частности данные о высоте зданий. В приложениях для 3D/4D-моделирования городской среды на основе исторических данных отсутствие информации о высоте зданий – главная проблема, не позволяющая добиться требуемой точности в представлении, анализе, визуализации и моделировании объемного пространства.

Ученые из Сколтеха и отдела 3DOM института FBK в Тренто исследовали возможности решений на основе машинного обучения по определению высоты зданий при помощи исторических карт местности.

Разработанный метод протестировали на четырех исторических картах Тренто (1851, 1887, 1908 и 1936 гг.) и Болоньи (1884 и 1945 гг.), на которых отражены наиболее существенные изменения в городской застройке за последние столетия, и восстановили динамические 4D-версии этих городов.

«Разработанная нами методика обучения и предсказания, протестированная на исторических данных, оказалась эффективной и перспективной для целого ряда других приложений. Пока для предсказания используется небольшое число характерных признаков, но в ближайшее время мы планируем обобщить методику для решения реальных задач в условиях отсутствия данных о высотах рельефа местности. Разработанные при помощи этой методики модели позволят восполнить нехватку геопространственных данных при исследовании исторических и труднодоступных ландшафтов», – рассказывает аспирант Сколтеха и FBK в Тренто Эмре Оздемир.

Подписывайтесь на наш Telegram, чтобы быть в курсе важных новостей медицины

Оставить комментарий

Вы можете использовать HTML тэги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>