Плесневый грибок научился чувствовать гравитацию благодаря бактериям

Плесневый грибок научился чувствовать гравитацию благодаря бактериям

Когда питательных веществ вокруг становится мало, плесневый грибок Phycomyces blakesleeanus поступает так же, как многие другие грибы – он формирует плодовые тела со спорами. Споры могут пережить неблагоприятные условия, кроме того, их можно отправить куда-то в новое место, где жить, может быть, будет проще. Плодовые тела грибка тянутся от мицелия вверх, чтобы лучше разбросать споры. Но как гриб понимает, где верх, а где низ?

Известно, что P. blakesleeanus чувствует гравитацию: в его клетках есть крупные мембранные пузырьки-вакуоли, в которых плавает белковый кристалл. Кристалл этот достаточно велик, и потому старается упасть на дно вакуоли, и гриб, ощущая перемещения кристалла, делает вывод, в какую сторону нужно отращивать плодовое тело.

Исследователи из Национального университета Сингапура решили узнать подробнее, из какого белка сделан «гравитационный кристалл» и что за ген его кодирует. В статье в PLоS Biology говорится, что белок, получивший название OCTIN, закодирован в гене, который гриб некогда получил от бактерии: сравнение генетических последовательностей показало, что у гена octin есть явные бактериальные родственники.

Само по себе это не так уж удивительно: мы неоднократно писали о так называемом горизонтальном переносе генов, когда последовательности ДНК передаются не по вертикали, не от родителей к детям (то есть не от родительской клетки к дочерней), а по горизонтали, между взрослыми клетками.
Горизонтальный перенос генов чрезвычайно широко распространен среди бактерий и архей, и в последнее время появляется все больше сообщений о том, что он происходит и среди эукариотических организмов (к которым относятся и грибы), и что гены таким образом могут путешествовать даже между разными царствами – например, между бактериями и грибами. Скажем, умение сотрудничать с растениями появилось у грибов как раз благодаря бактериальным генам. И предок P. blakesleeanus вполне мог позаимствовать свой octin у какой-нибудь бактерии.

Но у самих бактерий в клетках для больших белковых кристаллов просто нет места. Те бактериальные белки, которые оказались родственны грибковому OCTIN, тоже складываются кристаллические структуры, но только в очень маленькие. Поэтому способность белка кристаллизоваться в естественных условиях следовало как-то развить. Действительно, у грибкового OCTIN в ходе эволюции появилось больше аминокислот, которые помогают прочно скрепить разные молекулы белка друг с другом (то есть в ходе естественного отбора преимущество получали те экземпляры гриба, у которых в белке появлялись подходящие мутации).
Также выяснилось, что сразу после синтеза OCTIN кристаллизуется плохо, и чтобы он начал кристаллизоваться хорошо, его нужно разрезать на две части – только после такой операции получится достаточно большой кристалл. Но фермент, который режет OCTIN, есть только в той самой вакуоли. Таким образом, сборка «гравитационного кристалла» происходит только там, где нужно.

Не совсем понятно, для чего этот белок был нужен той бактерии, от которой грибок его получил, и что этот белок, пока еще не способный формировать крупные кристаллы, делал поначалу в самом грибке. Возможно, что даже в виде очень небольших частиц он все равно как-то помогал различать верх и низ, пусть и не очень эффективно.

Кстати говоря, похожий белок взяли у бактерий и грибы другого рода, Oomyces, но работает ли он у них таким же гравитационным датчиком или же выполняет какую-то другую функцию, станет ясно после дальнейших исследований.

Иллюстрация к статье: Яндекс.Картинки
Подписывайтесь на наш Telegram, чтобы быть в курсе важных новостей медицины

Оставить комментарий

Вы можете использовать HTML тэги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>