Физики впервые показали квантовую природу пептидов

Физики впервые показали квантовую природу пептидов

Ученые впервые продемонстрировали квантовое поведение молекул пептидов. Эти соединения представляют собой полимеры из нескольких аминокислот и очень распространены в живой природе. Результаты экспериментов открывают возможности для изучения квантовых свойства белков, участков ДНК и других биомолекул, пишут авторы в препринте на arXiv.org.

Одним из основополагающих положений квантовой механики является корпускулярно-волновой дуализм. Этим термином называется свойство реальных частиц вести себя и как классические точечные тела, и как волны. Наиболее ярко этот принцип проявляется в двухщелевом эксперименте, в котором поток частиц (например, электронов) попадает на непрозрачный экран с узкими прорезями. В результате позади него образуется интерференционная картина, то есть частицы демонстрируют волновое поведение.

Еще отчетливее квантовая природа видна при снижении интенсивности потока частиц. Оказывается, что даже в случае движения одиночных объектов они все равно ведут себя подобно волнам. В таком случае обычно иносказательно говорят, что частица «интерферирует сама с собой» и «проходит через обе щели сразу». Подобные эксперименты проводились множество раз, в результате чего удалось доказать квантовую природу многих видов частиц, таких как электроны, фотоны или отдельные атомы.

Теоретически корпускулярно-волновой дуализм предсказывает возможность наблюдения волновых свойств любых тел, однако для этого необходимо изучать отклонения от классической физики на малых расстояниях. Это связано с тем обстоятельством, что для массивного объекта соответствующие явления становятся заметными на масштабе, сравнимом с длиной волны де Бройля для данного тела, которая обратно пропорциональна массе. Получается, что чем массивнее объект, тем сложнее зарегистрировать его квантовое поведение.

В 1999 году была экспериментально доказана квантовая природа молекул фуллерена C60. На данный момент квантовое поведение зафиксировано у частиц с массами вплоть до порядка 10000 атомных единиц массы, которые состоят из примерно тысячи атомов. Однако существующие технологии позволяют работать далеко не с любыми соединениями. В частности, большинство важных в контексте биологии веществ легко разрушаются при воздействиях, которые должны создавать молекулярный пучок достаточной интенсивности.

Физикам из Австрии, Великобритании и США под руководством Маркуса Арндта (Markus Arndt) из Венского университета впервые удалось наблюдать квантовые свойства пептида, то есть полимера из небольшого количества аминокислот. В рамках эксперимента ученые создавали пучки грамицидина A1 в газовой фазе — антибиотика с линейной структурой из 15 аминокислот, масса молекул которого равна 1882 атомным единицам массы.

Проведенные опыты заключались в создании пучка ультрахолодных молекул и наблюдении интерференционных картин от взаимодействия частиц. Для этого ученые обстреливали покрытый грамицидином цилиндр лазерными импульсами длительностью несколько фемтосекунд, а испарившиеся молекулы увлекали потоком аргона или гелия. Затем поток сужали и направляли в полностью оптический интерферометр Тальбота — Лау, в котором в качестве дифракционных решеток выступают стоячие волны ультрафиолетового лазера. Выбранная частота лазера позволяет эффективно ионизировать остатки триптофана в составе грамицидина, что превращает стоячую волну в череду полос прозрачности.

Длина волны де Бройля для молекул грамицидина должна составлять около 350 фемтометров, что в 10000 раз меньше радиуса Ван-дер-Ваальса, на котором становятся заметны межмолекулярные силы взаимодействия. Однако полученную авторами картину интерференции можно объяснить только в предположении, что молекулы делокализованы более чем на 20 своих размеров.

Авторы называют ключевым использованным новшеством применение ультрафиолетовых лазеров с фемтосекундными импульсами, что позволило испарять хрупкие молекулы эффективнее любых других методов. Ученые прогнозируют, что схожим образом можно добиться изучения квантового режима небольших белков, таких как инсулин. Дальнейшие модификации должно позволить реализовать схожие опыты с другими видами биомолекул, в том числе с участками ДНК.

Недавно ученые показали лазерную передачу энергии для военных, превратили двумерный нитрид бора в квантовое сито для изотопов водорода и получили устойчивые капли магнитной «квантовой жидкости».

Иллюстрация к статье: Яндекс.Картинки
Самые свежие новости медицины в нашей группе на Одноклассниках

Оставить комментарий

Вы можете использовать HTML тэги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>